NEURAL STEM/PROGENITOR CELLS IN THE POST-ISCHEMIC ENVIRONMENT Proliferation, Differentiation and Neuroprotection

نویسنده

  • Jonas Faijerson
چکیده

Stroke is one of the leading causes of chronic disability and death in the Western world. Today, no treatment can repair the cellular loss associated with an ischemic lesion. However, the discovery and dynamic regulation of neural stem/progenitor cells in the adult mammalian brain has resulted in exciting possibilities for future therapeutic interventions. Endogenous or grafted neural stem/progenitor cells are activated following an ischemic insult. These cells undergo directed migration towards infarcted areas, and differentiate in response to the insult. Unfortunately, the results of this regenerative effort are limited compared to the amount of tissue loss. This could be due to low survival of the recruited cells, but could also be explained by insufficient activation or dysfunctional lineage selection. Whether the lineage selection of neural stem/progenitor cells is altered following a lesion in the brain, what signals that are responsible for their activation or whether these cells can participate in post-lesion regeneration, astrogliosis or neuroprotection have yet to become clear. A greater understanding of these processes is necessary for finding ways to improve the endogenous regenerative capacity. We found that reactive astrocytes, a prominent part of the post-ischemic environment, induced astroglial differentiation of adult neural stem/progenitor cells in vitro. Moreover, astrocytes derived from these cells were shown to participate in glial scar formation in vitro. After studying gene expression in the peri-infarct region following focal ischemia, the expression of several genes was induced. We chose to focus our attention on one of these genes and its product, thyrotropin-releasing hormone (TRH). Immunoreactivity for TRH was found in several areas in both lesioned and intact brain regions, including in microglia present in the areas surrounding the lesion. Furthermore, TRH receptors were expressed on cultured neural stem/progenitor cells and TRH potently induced the proliferation of these cells. TRH is an interesting target for stroke treatment, but it also has many central effects in the brain and systemic administration may prove problematic. An interesting protocol for local delivery of TRH would be by grafting stem/progenitor cells, genetically engineered to secrete the peptide. In order to create a foundation for neuroprotective gene therapy, we developed efficient methods for non-viral transfection of neural stem/progenitor cells. Since neural stem/progenitor cells migrate towards the ischemic area we wanted to investigate whether these cells secreted factors that could protect neurons against excitotoxicity, the main inducer of cell death following a stroke. Mass spectrometric analysis of factors secreted from cultured neural stem/progenitor cells led to the identification of a novel neuroprotective peptide, which we termed pentinin. This peptide potently reduced excitotoxicity in both mature and immature neurons in an ex vivo hippocampal slice model. The results presented in this thesis show that the proliferation and differentiation of neural stem/progenitor cells can be dramatically affected by factors in the post-ischemic environment. Furthermore, the results suggest that neural stem/progenitor cells can participate in both glial scar formation and neuroprotection after an ischemic lesion. Finally, a novel neuroprotective peptide was identified. This peptide may be important for the protection of endogenous cells following insults in the brain and may represent an effective novel target for the treatment of stroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of the Factors Affecting the Proliferation of Neural Stem and Progenitor Cells

Neural stem cells are undifferentiated cells that are located in limited areas of central nervous system. These cells have proliferation and self-renew ability and can be differentiated into neurons and glial cells. Mature nerve cells do not have proliferative ability; and due to the limited number of nerve stem cells, injuries to the nervous system are not recoverable. The purpose of this revi...

متن کامل

PuraMatrix hydrogel enhances the expression of motor neuron progenitor marker and improves adhesion and proliferation of motor neuron-like cells

Objective(s): Cell therapy has provided clinical applications to the treatment of motor neuron diseases. The current obstacle in stem cell therapy is to direct differentiation of stem cells into neurons in the neurodegenerative disorders. Biomaterial scaffolds can improve cell differentiation and are widely used in translational medicine and tissue engineering. The aim...

متن کامل

High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...

متن کامل

Dehydroepiandroesteron increased proliferation of neural progenitor cells derived from p19 embryonal carcinoma stem cells.

Introduction: The p19 line of embryonal carcinoma cells develops into neurons, astroglia and fibroblasts after aggregation and exposure to retinoic acid (RA). Dehydroepiandroesteron (DHEA) is a neurosteroid, can increase proliferation of human neural stem cell (NSC) and positively regulated the number of neurons produced. This study was initiated to assess the effect of DHEA on neural progenito...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007